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Abstract

A new class of unsteady analytical solutions of the spherical shallow water equations (SSWE) is presented. Analyt-
ical solutions of the SSWE are fundamental for the validation of barotropic atmospheric models. To date, only steady-
state analytical solutions are known from the literature. The unsteady analytical solutions of the SSWE are derived by
applying the transformation method to the transition from a fixed cartesian to a rotating coordinate system. Funda-
mental examples of the new unsteady analytical solutions are presented for specific wind profiles. With the presented
unsteady analytical solutions one can provide a measure of the numerical convergence in the case of a temporally evolv-
ing system. An application to the atmospheric model PLASMA shows the benefit of unsteady analytical solutions for
the quantification of convergence properties.
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1. Introduction

During the course of the development of dynamical cores in numerical weather prediction and climate
modeling the development of a global barotropic model for atmospheric flows is a crucial step. For this
reason, in the past barotropic models have been developed which are based on the spherical shallow water
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equations (SSWE). The SSWE comprise the essential physical phenomena that are included in the full set of
primitive equations, e.g. large scale planetary waves and gravity waves. Furthermore, the SSWE present the
major difficulties found in the horizontal discretization of the 3-dimensional primitive equations. In order
to validate implemented numerical methods for the SSWE, reasonable test cases are required.

To date, the comprehensive test suite proposed by Williamson et al. [34] is the common basis for newly
developed global shallow water models. Succeeding, additional tests have been proposed in the literature,
e.g. [10]. In the following, an overview of the known test cases is given which can be divided into four
categories:

1.1. Integrations of analytical solutions of simplified SSWE

Applying the common scale analysis, i.e. neglecting terms with small magnitude, simplified SSWE can be
derived, like e.g. the linearized non-divergent barotropic vorticity equation or the geostrophic balance
equation. Even though solutions of these systems are no analytical solutions of the full non-linear SSWE,
integrations initialized by such initial states validate a SSWE model with respect to stability and noise
generation.

For the first time Phillips [24] proposed Rossby–Haurwitz waves as initial fields for integrations of a
SSWE model. Rossby–Haurwitz waves are solutions of the linearized non-divergent barotropic vorticity
equation and move from west to east without change of their shape. Since Hoskins [15] showed that only
Rossby–Haurwitz waves of zonal wave number 5 and less are stable, in the literature wave number 4 is ap-
plied to SSWE models, see e.g. [34,17]. McDonald and Bates [21] proposed a geostrophic balanced initial
state of zonal wave number 1. Due to the presence of divergence the wave rotates clockwise around the
pole, see e.g. [11].

1.2. Integrations of steady-state analytical solutions of the SSWE

Steady-state analytical solutions of the SSWE mainly describe a purely zonal global flow with a bal-
anced geopotential field. To our knowledge, solid body rotations on a non-rotating sphere have been
described firstly by Dey [7] and on a rotating sphere by Umscheid and Sankar-Rao [32]. Taking into
account that, except for the Coriolis term, the SSWE are invariant under a rotation of the spherical coor-
dinates, an inclined solid body rotation with an inclination angle a = p/2 was given in [32] and for arbi-
trary a 2 [0,p] in [33]. Considering a more realistic zonal wind field, resembling a typical tropospheric jet,
Browning et al. [3] deduced a steady-state analytical solution with compact support. Note that the bal-
anced geopotential field is obtained by numerical integration. The mentioned solutions are inserted in [34,
tests 2,3].

1.3. Integrations of unsteady analytical solutions of the SSWE with the prescribed-solution forcing technique

For this class of solutions, the basic idea is to prescribe the exact solution of a non-linear flow by adding
appropriate forcing terms to the SSWE. For example, Rossby–Haurwitz waves [22], a linear combination
of Hough-harmonics [6] or a translating low pressure center superimposed on a jet stream [3,34] were ap-
plied as prescribed solutions.

1.4. Integrations initialized by close to reality data fields

Analytical solutions of simplified SSWE or the full non-linear SSWE, mentioned in (1.1)–(1.3), are not
sufficient for the validation of SSWE models applied to more realistic flow situations. Instead, more elab-
orate initial states were used for SSWE models which describe real atmospheric phenomena, like e.g. the
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generation of planetary waves. For example, Takacs [29] introduced the initial state of a solid body rotation
with a balanced geopotential corresponding to the global zonal geostrophic flow in [34, test 2], disturbed by
an isolated mountain. Galewsky et al. [10] proposed a balanced zonal wind field with a given meridional
wind profile similar to [34, test 3], disturbed by a given initial perturbation of the balanced geopotential
field. In both cases, the perturbations to the barotropic zonal flow induce planetary waves. Williamson
et al. [34, test 7] described integrations of several initial states which are derived from observational analyses
of the 500 hPa height and wind field.

This overview on tests for the SSWE reveals that analytical solutions of the SSWE are rare and especially
unsteady analytical solutions are not available in the literature.

The quantification of the model�s convergence properties is one of the main tasks of model validation.
Reference solutions for a few non-analytical solutions were usually obtained with very high resolution spec-
tral models, e.g. [17]. These numerical solutions suffer from inaccuracies and thus allow only a comparison
of model results. Additionally, quantitative information about a model can be obtained by analyzing con-
servation properties, but this does not necessarily provide information about convergence properties. Final-
ly, the distance of an analytical and a numerical solution yields an objective measure of the quality of the
model result. For that reason, the knowledge about analytical solutions is crucial for convergence studies
and thus model validation.

Here, the transformation method for the SSWE is introduced and applied to provide unsteady analytical
solutions for the validation process of atmospheric models. This method is based on the transformation
from a fixed cartesian to a rotating coordinate system. Fundamental examples for unsteady analytical solu-
tions of the SSWE are derived which have not been available in the literature until now. The benefit of the
new analytical solutions for the validation of numerical models is demonstrated. Due to the limited com-
plexity of the known analytical solutions, the physical relevance of the presented examples is limited, too.
However, Piani and Norton [25] showed that the simple solid body rotation is close to observed atmo-
spheric data in the summer stratosphere.

To support a reliable formulation of the analytical solutions, two common formulations of the
SSWE, namely in a cartesian coordinate system and in spherical coordinates are given in Section 2.
In Section 3, we present the transformation method for the SSWE. By applying the transformation
method, we derive fundamental examples for unsteady analytical solutions in cartesian and spherical
coordinates in Section 4. Finally, we demonstrate the benefit of the new analytical solutions by analyzing
the convergence properties of the barotropic model PLASMA (Parallel Large Scale Model of the Atmo-
sphere) in Section 5.
2. Spherical shallow water equations

In spherical geometry, the description of functions depends on the choice of local coordinates. Because
the SSWE are formulated as well in cartesian as in spherical coordinates in the literature, both formulations
are described in the following. The examples of unsteady analytical solutions of the SSWE in both formu-
lations are given in Section 4.

We introduce some notation for preparation. Let a = 6.371 · 106 m be the Earth radius,
X = 7.292 · 10�5 s�1 the Earth�s angular velocity and I ¼ ð0; T Þ � R a fixed time interval. For two vec-
tors x; y 2 R3, we denote the scalar product by x Æ y. The components of a vector x 2 R3 with respect to
the generic basis in Eq. (A.1) are denoted by xi = x Æ ei for i = 1, 2, 3. Throughout the whole article, we
use the Einstein summation convention. That is, if an index value, e.g. i, appears more than once in a
term, e.g. in A(i)B(i), and i is not fixed outside of A(i)B(i), then the reader has to substitute A(i)B(i)
by

P3
i¼1AðiÞBðiÞ.
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2.1. Representation in a cartesian coordinate system

The representation of the SSWE in a cartesian coordinate system is based on the embedding of the
sphere into R3, see e.g. [4,34,28,27,31,14,26,12,2]. Thus, the prognostic functions as well as the differential
operators are defined in R3.

We define the spherical shell with the thickness 2e > 0
Ge ¼ fx 2 R3 j a� e < jxj < aþ eg ð1Þ

and the sphere S ¼ fx 2 R3 j jxj ¼ ag as spatial domains. The velocity field u : Ge � I ! R3 and the geopo-
tential field U : Ge � I ! R are smooth functions in Ge. We call (u,U) a solution of the SSWE in the carte-
sian coordinate system, if u and U fulfill the equations
otuþ u � rSuþrSU ¼ �f n� u� juj2

jxj n; ð2Þ

otUþ u � rSðU� UBÞ þ ðU� UBÞ divSu ¼ 0; ð3Þ
u � n ¼ 0 ð4Þ
in the space–time domain S · I. Here n = x/|x| is the normalized radial vector, $Sg = $g � (n Æ $g)n the
horizontal gradient, divSv = div(v � v Æ nn) the horizontal divergence, f = 2Xe3 Æ n the Coriolis parameter
and UB : Ge ! R the given orography field. The functions u and U have to be defined in a neighborhood
of S, here Ge, in order to ensure well-defined differential operators divSu and $SU. In any case, since
the values of all terms in Eqs. (2)–(4) are independent on the function values of u and U in GenS, the
temporal evolution of (u,U) in S depends on the initial conditions in S only. Thus, a function (u|S,U|S)
which is defined in S only, is a solution of the SSWE, if any smooth continuation (u,U) to Ge solves
Eqs. (2)–(4).
2.2. Representation in spherical coordinates

An alternative formulation of the SSWE (2)–(4) in spherical coordinates is described by e.g. Côté and
Staniforth [5], Williamson et al. [34], Jakob-Chien et al. [17], Lin and Rood [20], Tolstykh [30], Jablonowski
[16]. Starting with a solution of Eqs. (2)–(4), we obtain the SSWE in spherical coordinates for the zonal and
meridional velocities and the geopotential field.

The spherical coordinates are defined in Re ¼ ð0; 2pÞ � ð� p
2
; p
2
Þ � ða� e; aþ eÞ by the position vector
r : Re ! rðReÞ; rðk; h; rÞ ¼ rðcos k cos h; sin k cos h; sin hÞT. ð5Þ

We define the local cartesian coordinate system (i(x), j(x),n(x)) at each spatial point x 2 r(Re) by
iðxÞ ¼ �x2e1 þ x1e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p ; jðxÞ ¼ �x1x3e1 � x2x3e2 þ ðx21 þ x22Þe3
jxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p ; nðxÞ ¼ x

jxj . ð6Þ
(e1,e2,e3) is the generic basis from Eq. (A.1). The vectors i, j and n point to the eastward, the northward and
the vertical direction, respectively.

Let (u,U) be a solution of the SSWE in the cartesian coordinate system (2)–(4). We define the zonal,
meridional and vertical velocity components u; v;w : Re � I ! R by
uð�Þ ¼ u � iðrð�ÞÞ; vð�Þ ¼ u � jðrð�ÞÞ; wð�Þ ¼ u � nðrð�ÞÞ. ð7Þ

The geopotential field W : Re � I ! R in spherical coordinates is defined by W(Æ) = U(r(Æ)).

To derive prognostic equations for u, v and w, we use the scalar multiplication of Eq. (2) and the basis
vectors i, j and n, respectively. We obtain
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in the spatial domain ð0; 2pÞ � ð� p
2
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Þ � fag. The prognostic equation forW is a consequence of Eq. (3). By

omitting the vertical velocity component w, this system simplifies in ð0; 2pÞ � ð� p
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� �
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These equations are called the SSWE in spherical coordinates.
3. The transformation method

The transformation method for the SSWE consists of the transition from a fixed coordinate system to a
rotating coordinate system. This method is well known from the literature, e.g. [13,23,8] for equations in
R3. Due to the embedding of the sphere S in R3, the method leads to a transformation for equations on
S. Practically, the transformation method adds an angular velocity to the original velocity field and gener-
ates the Coriolis term in the dynamical equations.

In a fixed coordinate system, we consider smooth functions v : Ge � I ! R3 and W : Ge � I ! R in the
spatial domain Ge, defined in Eq. (1). We call the system
otvþ v � rSvþrSW ¼ � jvj2

jxj n; ð8Þ

otðW�WBÞ þ v � rSðW�WBÞ þ ðW�WBÞdivSv ¼ 0; ð9Þ
v � n ¼ 0 ð10Þ
in S the SSWE without Coriolis force, where WB : Ge � I ! R is a given time-dependent orography field.

Remark 1. Because the Earth rotates in the inertial system of (8)–(10), it is natural to consider the
orography WB as a time-dependent function.
3.1. Rotating coordinate system

The transition from a fixed to a rotating coordinate system can be obtained by applying general curvi-
linear coordinates, see Appendix A. For a velocity field v and a scalar field W in the fixed coordinate system,
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we consider the fields u and U in the rotating coordinate system. We give the well known transformation of
their total derivatives.

We consider the generic basis (e1,e2,e3) from Eq. (A.1) as the basis of the fixed coordinate system. For all
t 2 I, we define the basis functions of the rotating coordinate system by
b1ðtÞ ¼ cosðXtÞe1 þ sinðXtÞe2;
b2ðtÞ ¼ � sinðXtÞe1 þ cosðXtÞe2;
b3ðtÞ ¼ e3.
By applying the equations of Appendix A, we determine the transition of coordinates in the spatial domain
Ge through the coordinate transformation function ut : Ge ! Ge. For all x,y 2 Ge, we define ut, its inverse
u�1

t : Ge ! Ge and the position vector r : Ge · I ! Ge by
utðxÞ ¼ x � biei; rðy; tÞ ¼ u�1
t ðyÞ ¼ y � eibi. ð11Þ
Then the relation
biðtÞ ¼
or

oyi
ðtÞ ¼

out;i

oxj
ej for i ¼ 1; 2; 3 ð12Þ
holds. With X = Xe3 and Eq. (A.2) for the velocity of a particle which is resting in the rotating coordinate
system we obtain the equation
wðxÞ ¼ Xð�r � e2e1 þ r � e1e2Þ ¼ Xe3 � rðutðxÞ; tÞ ¼ X� x.
Let now v : Ge ! R3 and W : Ge ! R be smooth fields, describing the motion of a fluid in the fixed coor-
dinate system. The same physical flow is described by the fields u : Ge ! R3 and U : Ge ! R in the rotating
coordinate system at a fixed time t 2 I. The relation between the corresponding fields follows from Eqs.
(A.3) and (12) and we obtain for all x 2 Ge the equations
vðxÞ ¼ ujutðxÞ � eibi þX� x; WðxÞ ¼ UjutðxÞ. ð13Þ
The last equation provides the transformation from the fixed to the rotating coordinate system using the
transformation function ut and the rotation operator Æ eibi. This is equivalent to the transformations in
[13,23,8] where appropriate indices for vectors in the different coordinate systems are used. We recall the
transformation of the total derivatives for v and W, see e.g. [13,23,8,19].

Theorem 1. Let v : Ge � I ! R3 and W : Ge � I ! R be smooth fields in the fixed coordinate system. By Eq.

(13), we define the velocity field u : Ge � I ! R3 and the scalar field U : Ge � I ! R in the rotating coordinate

system. Then the following properties hold for the total derivatives of u and U in Ge · I:
½otvþ v � rv�x ¼ ½otuþ u � ruþ 2X� uþX� ðX� yÞ�y¼utðxÞ � eibi;
½otWþ v � rW�x ¼ ½otUþ u � rU�utðxÞ.
3.2. Transformation of the shallow water equations

Theorem 1 includes the transformation of the total derivative from the fixed to the rotating coordinate
system. To obtain a transformation of the whole SSWE without Coriolis force in terms of v and W, we have
to specify the transformation for the remaining terms in Eqs. (8)–(10). This results in the SSWE in terms of
u and U in the rotating coordinate system.
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For the transformation of the centrifugal force term jvj2
jxj n in Eq. (8), we substitute v by u with Eq. (13)

which leads with Eq. (15) to a decomposition of the centrifugal force. A fraction of that centrifugal force
is expressible as a gradient field of the auxiliary geopotential field
WZðxÞ ¼ � ðX � xÞ2

2
8x 2 R3. ð14Þ
We will take advantage of this property at the end of the proof to Theorem 3 and provide the required
arithmetics in Lemma 2.

Lemma 2. For all vectors u; y 2 R3 with y 6¼ 0 the equations
juþX� yj2

jyj ¼ juj2

jyj þ 2u � ðX� nÞ þ ðX� nÞ � ðX� yÞ; ð15Þ

� rSWZðyÞ ¼ X� ðX� yÞ �X� ðX� yÞ � nn ð16Þ
hold. If additionally u Æ n(y) = 0 holds, it follows
X� u� ðX� uÞ � nn ¼ X � nn� u. ð17Þ

Proof. For u; y 2 R3 with y 6¼ 0 and a; b; c 2 R3 with |c| = 1 some arithmetics yield
juþX� yj2 ¼ juj2 þ 2u � ðX� yÞ þ ðX� yÞ � ðX� yÞ;

�rSWZðyÞ ¼
X2y3
jyj2

ð�y1y3;�y2y3; y
2
1 þ y22Þ

T
;

ða� bÞ � cc ¼ ða� a � ccÞ � ðb� b � ccÞ.
Whereas Eqs. (15) and (16) are consequences of the first two equations, Eq. (17) follows from the third
equation with u Æ n(y) = 0, a = X, b = u and c = n(y). h

Now we are prepared to give the main theorem which states the relationship between a solution (v,W) of
the SSWE without Coriolis force and the corresponding function (u,U) in the rotating coordinate system.

Theorem 3. Let (v,W) be a solution of the SSWE without Coriolis force (8)–(10) with the time-dependent

orography WB : Ge � I ! R. Further on let u : Ge � I ! R3 and U;UB : Ge � I ! R be the functions in the
rotating coordinate system which fulfill the equations
uðyÞ ¼ ½v�X� x�x¼u�1
t ðyÞ � biei;

UðyÞ ¼ ½W�WZ �u�1
t ðyÞ;

UBðyÞ ¼ ½WB �WZ �u�1
t ðyÞ.
Then (u,U) is a solution of the SSWE (2)–(4) with the orography UB.

Proof. For the geopotential field WZ in Eq. (14), we define the corresponding field in the rotating coordi-
nate system for y 2 Ge by UZðyÞ ¼ WZ ju�1

t ðyÞ ¼ WZðyÞ. Let v; u : Ge � I ! R3 and W;U : Ge � I ! R be func-
tions with the properties in Theorem 3. Then for all x,y 2 Ge, it follows
rWðxÞ ¼ oW
oxi

ei; rUðyÞ ¼ oU
oyi

ei; nðxÞ ¼ njutðxÞ � eibi.
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Applying this and Eq. (12), the transformation of the terms in Eqs. (8)–(10) for all x 2 Ge leads to
rSWðxÞ ¼ oðUþ UZÞ
oyi

out;i

oxj
ðej � ej � nnÞ ¼

oðUþ UZÞ
oyi

bi � ejðej � ej � nnÞ

¼ rðUþ UZÞ � eiðbi � bi � nðxÞnðxÞÞ ¼ rðUþ UZÞ � ei½bi � ðei � nÞðn � ejÞbj�utðxÞ

¼ rSðUþ UZÞjutðxÞ � eibi; ð18Þ

jvðxÞj2

jxj nðxÞ ¼ juþX� yj2

jyj n

" #
y¼utðxÞ

� eibi ð19Þ
and
divSvðxÞ ¼
oðv� v � nnÞ � ej

oxj
¼ oðv� v � nnÞ � u�1

t

oyi

����
utðxÞ

� ej
out;i

oxj

¼ ouþX� y� u � nn
oyi

����
y¼utðxÞ

� ejbj � bi ¼
ou� u � nn

oyi

����
utðxÞ

� ei ¼ divS ujutðxÞ. ð20Þ
Applying Theorem 1 and Eqs. (18)–(20) to Eqs. (8)–(10), we obtain
otuþ u � rSuþ 2X� uþX� ðX� yÞ þ rSðUþ UZÞ ¼ � juþX� yj2

jyj n;

otðU� UBÞ þ u � rSðU� UBÞ þ ðU� UBÞdivSu ¼ 0;

u � n ¼ 0
for all (y, t) 2 S · I. By using Lemma 2, we find that (u,U) fulfills the SSWE (2)–(4) which completes the
proof. h

According to Remark 1, it was natural to consider the time-dependent orography WB. In contrast to
that, the time dependence of UB has to vanish for physically relevant solutions of Theorem 3, because
the rotating coordinate system (b1,b2,b3) is fixed on the rotating Earth.
4. Analytical solutions

The transformation method in Section 3 allows us to derive a solution of the SSWE (2)–(4), if a solution
of the SSWE without Coriolis force (8)–(10) is known. The results are unsteady solutions of the SSWE with
a time period of 1 day. In the following, we derive three examples of unsteady solutions of the SSWE, an
unsteady axially symmetric solution with an arbitrary wind profile and two special cases of it. The first is an
unsteady solid body rotation and the second an unsteady solid body rotation with a superimposed unsteady
jet stream.

4.1. A steady-state solution

To apply Theorem 3 a solution of the SSWE without Coriolis force (8)–(10) is required. We confine our-
selves to an example of an axially symmetric solution of the SSWE, see e.g. [3,34,19].

Example 1 (Steady state axially symmetric flow). Let b 2 R3; jbj ¼ 1 be a fixed symmetry axis, k1; k2 2 R

arbitrary constants and vp : ½�1; 1� ! R a smooth velocity profile with a bounded integral
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Z p
2

�p
2

j tan/ v2pðsin/Þj d/ < þ1. ð21Þ
Then the function (v,W), defined for x 2 Ge
vðxÞ ¼ vpðb � nðxÞÞ
b� nðxÞ
jb� nðxÞj ;

WðxÞ ¼ �
Z arcsinðb�nðxÞÞ

0

tan/ v2pðsin/Þ d/þ k1;

WBðxÞ ¼ k2
is a solution of the SSWE without Coriolis force (8)–(10) with the orography WB.

Remark 2. To obtain a reasonable solution in Example 1, that is to obtain a non-negative mass in Eq. (9),
the constants k1 and k2 should be chosen such, that WB < W holds.

A smooth bounded velocity profile vp with compact support in (0,1) is sufficient to fulfill Eq. (21).
4.2. Unsteady solutions

In this section, we obtain unsteady solutions of the SSWE (2)–(4) by applying Theorem 3 to Example 1
of a steady state axially symmetric flow. Example 2 is the general case of an unsteady axially symmetric
flow, see [19, p. 69f]. Examples 3 and 4 are special cases of Example 2. All derived solutions describe a pre-
cession around the Earth�s axis with a time period of 1 day. Because Example 1 gives a non-divergent solu-
tion, the unsteady solutions are non-divergent, too.

Example 2 (Unsteady axially symmetric flow). Let a 2 R3; jaj ¼ 1 be a fixed symmetry axis, k1; k2 2 R

arbitrary constants and up : ½�1; 1� ! R a smooth velocity profile with a bounded integralR p
2

�p
2
j tan/ u2pðsin/Þj d/ < þ1. Further on let ut be the coordinate transformation function for the

rotation in Eq. (11). Then the function (u,U), defined for (x, t) 2 Ge · I
uðx; tÞ ¼ upðutðaÞ � nðxÞÞ
utðaÞ � nðxÞ
jutðaÞ � nðxÞj �X� x;

Uðx; tÞ ¼ �
Z arcsinðutðaÞ�nðxÞÞ

0

tan/u2pðsin/Þ d/þ ðX � xÞ2

2
þ k1;

UBðxÞ ¼
ðX � xÞ2

2
þ k2
is a solution of SSWE (2)–(4) with the orography UB. To prove this, we apply Theorem 3 to the functions v
and W of Example 1 with the parameters b = a and vp = up. The scalar fields vorticity f and divergence d
fulfill the equations
fðx; tÞ ¼ upðutðaÞ � nÞutðaÞ � n

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðutðaÞ � nÞ

2
q �

u0pðutðaÞ � nÞ
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðutðaÞ � nÞ

2
q

� 2X � n;

dðx; tÞ ¼ 0.
With Eqs. (5), (7) and the local coordinate system in Eq. (6) this solution may be written in spherical
coordinates. We conclude, that for all (k,h, r) 2 Re, t 2 I and with x = r(k,h, r) the functions
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uðk; h; r; tÞ ¼ upðutðaÞ � nðxÞÞ
jutðaÞ � nðxÞj utðaÞ � jðxÞ � rX cos h;

vðk; h; r; tÞ ¼ � upðutðaÞ � nðxÞÞ
jutðaÞ � nðxÞj utðaÞ � iðxÞ;

Uðk; h; r; tÞ ¼ �
Z arcsinðutðaÞ�nðxÞÞ

0

tan/u2pðsin/Þ d/þ ðrX sin hÞ2

2
þ k1;

UBðk; h; rÞ ¼
ðrX sin hÞ2

2
þ k2
are a solution of the SSWE in spherical coordinates. For simplicity, in the remaining terms we choose for
a 2 [0,p] the axis a ¼ � sin ae1 þ cos ae3. Thus, we obtain the expressions
utðaÞ � i ¼ sin aðsin k cosXt þ cos k sinXtÞ;
utðaÞ � j ¼ sin a sin hðcos k cosXt � sin k sinXtÞ þ cos a cos h;

utðaÞ � n ¼ sin a cos hð� cos k cosXt þ sin k sinXtÞ þ cos a sin h; ð22Þ
utðaÞ � n ¼ sin a sin h sinXt � cos a sin k cos h½ �e1 þ sin a sin h cosXt þ cos a cos k cos h½ �e2

þ � sin a cos hðsin k cosXt þ cos k sinXtÞ½ �e3.
The orography UB is depicted in Fig. 1. Note the unit [1 gpm = 9.81 m2/s2].

Correspondingly, Remark 2 holds for Example 2. The solution of Example 2 has a time period of 1 day
and uses the non-zero orography UB. However, it should be stated that the orography UB is not a good
approximation of the real Earth�s orography. The following Example 3 is a special case of Example 2
and describes a solid body rotation with a precession around the Earth�s axis, see [19,18].

Example 3 (Unsteady solid body rotation). Let c 2 R3; jcj ¼ 1 be a fixed rotation axis, u0 2 R the maximal
flow velocity and k1; k2 2 R arbitrary constants. Let ut denote the coordinate transformation function for
the rotation in Eq. (11). Then the function (usbr,Usbr), defined for (x, t) 2 Ge · I
usbrðx; tÞ ¼ u0utðcÞ � n;

Usbrðx; tÞ ¼
�ðu0utðcÞ � nþX � xÞ2

2
þ ðX � xÞ2

2
þ k1;

UBðxÞ ¼
ðX � xÞ2

2
þ k2

ð23Þ
Fig. 1. Orography UB, Example 2.
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is a solution of the shallow water equations (2)–(4) with the orography UB. The derivation consists of an
application of Example 2. More precisely, we choose the constant v0 = |u0c + aX|, the symmetry axis a

and the velocity profile up,sbr
a ¼ v�1
0 u0cþ aXð Þ; up;sbrðxÞ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
8x 2 ½�1; 1�; ð24Þ
respectively. With the above values of a and up = up,sbr, the fields u, U and UB, defined in Example 2, yield
the present example. The vorticity and divergence fields of Example 2 simplify to
fðx; tÞ ¼ 2u0
a

utðcÞ � n; dðx; tÞ ¼ 0.
Analog to Example 2, this solution may be written in spherical coordinates using Eqs. (5)–(7). For simplic-
ity, we choose for a 2 [0,p] the axis c ¼ � sin ae1 þ cos ae3. We conclude that for all (k,h, r) 2 Re, t 2 I and
with x = r(k,h, r) the functions
usbrðk; h; r; tÞ ¼ u0ðsin a sin hðcos k cosXt � sin k sinXtÞ þ cos a cos hÞ;
vsbrðk; h; r; tÞ ¼ �u0 sin aðsin k cosXt þ cos k sinXtÞ;
Usbrðk; h; r; tÞ ¼ �1

2
½u0ðsin a cos hð� cos k cosXt þ sin k sinXtÞ þ cos a sin hÞ þ rX sin h�2

þ 1
2
ðrX sin hÞ2 þ k1;

UBðk; h; rÞ ¼ 1
2
ðrX sin hÞ2 þ k2
are a solution of the SSWE in spherical coordinates. For the example�s application in Section 5 we have
chosen the parameter values a = p/4, u0 = 2pa/12 m/day, k1 = 133681 m2/s2 and k2 = 0 m2/s2. The velocity
usbr and the geopotential Usbr at the initial time t = 0 s are depicted in Fig. 2.

Correspondingly, Remark 2 holds for Example 3. For a = 0, Example 3 corresponds to [34, case 2], but
with a different orography. With the presented transformation method it is not obvious to give an unsteady
example of an axially symmetric flow with compact support, as described in the steady state case e.g. in [10]
and [3]. However, the following special case of Example 2 describes an unsteady solid body rotation with a
superimposed tropospheric jet.

Example 4 (Unsteady jet stream). Let c 2 R3; jcj ¼ 1 be a fixed rotation axis, u0; u1 2 R flow velocities,
h0; h1 2 ð� p

2 ;
p
2Þ latitudinal angles and k1; k2 2 R arbitrary constants. Let ut denote the coordinate

transformation function for the rotation in Eq. (11). Further on let usbr and Usbr be the fields in Eq. (23) and
let a and up,sbr be defined by Eq. (24). With c0 ¼ u1 exp 4

ðh0�h1Þ2

� �
, we define the velocity profile of the jet

stream for all x 2 [�1,1] by
Fig. 2. Velocity usbr, geopotential Usbr, Example 3.
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up;jetðxÞ ¼
c0 exp 1

ðarcsin x�h0Þðarcsin x�h1Þ

� �
for h0 6 arcsin x 6 h1;

0 else.

(

Then the function (u,U), defined for all (x, t) 2 Ge · I
uðx; tÞ ¼ usbrðx; tÞ þ up;jetðutðaÞ � nÞ
utðaÞ � n

jutðaÞ � nj ;

Uðx; tÞ ¼ Usbrðx; tÞ �
Z arcsinðutðaÞ�nÞ

0

tan/ðup;sbrup;jet þ u2p;jetÞ � sin/ d/þ k1;

UBðxÞ ¼
ðX � xÞ2

2
þ k2
is a solution of SSWE (2)–(4) with the orography UB. The derivation is similar to Example 3. More pre-
cisely, it is an application of Example 2 with the symmetry axis a and the velocity profile up = up,sbr + up,jet.
The representation of vorticity f and divergence d is the same as in Example 2, but cannot be simplified
here.

Analog to Example 2, this solution may be written in spherical coordinates using Eqs. (5)–(7). For
simplicity, we choose for a 2 [0,p] the axis c ¼ � sin ae1 þ cos ae3 and after the axis a by Eq. (24). For all
(k,h, r) 2 Re, t 2 I and with x = r(k,h, r) we obtain, using Eq. (22), the functions
uðk; h; r; tÞ ¼ usbrðk; h; r; tÞ þ
up;jetðutðaÞ � nÞ
jutðaÞ � nj utðaÞ � j;

vðk; h; r; tÞ ¼ vsbrðk; h; r; tÞ �
up;jetðutðaÞ � nÞ
jutðaÞ � nj utðaÞ � i;

Uðk; h; r; tÞ ¼ Usbrðk; h; r; tÞ �
Z arcsinðutðaÞ�nÞ

0

tan/ðup;sbrup;jet þ u2p;jetÞ � sin/ d/þ k1;

UBðk; h; rÞ ¼
1

2
ðrX sin hÞ2 þ k2
which are a solution of the SSWE in spherical coordinates. Here, usbr, vsbr and Usbr denote the solution in
spherical coordinates of Example 3. For the example�s application in Section 5 we have chosen the param-
eter values a = p/4, u0 = 20 m s�1, u1 = 2pa/12 m/day, h0 = p/7, h1 = (p/2) � h0, k1 = 130905 m2 s�2 and
k2 = 0 m2 s�2. The velocity u and the geopotential U at the initial time t = 0 s are depicted in Fig. 3.

Correspondingly, Remark 2 holds for Example 4.
Fig. 3. Velocity u, geopotential U, Example 4.
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5. Convergence properties of the atmospheric model PLASMA

In this section, we quantify the convergence properties of the atmospheric model PLASMA (Parallel
Large Scale Model of the Atmosphere) by means of the steady-state solution [34, case 2] and the unsteady
analytical solutions from Section 4.2. Several features of the model PLASMA have been published recently,
concerning the numerical method in [18,19], concerning the grid generation in [1] and concerning the matrix
solver in [9]. The reader may contact the authors by e-mail to get a FORTRAN 90 code for the unsteady
solutions in Section 4.2.

The model equations of PLASMA are the SSWE (2)–(4) in scalar formulation with the prognostic vari-
ables vorticity f, divergence d and geopotential U
otfþ u � rSfþ fdþ f d ¼ �u � rSf ;

otdþ u � rSdþ DSU� f f ¼ �ðn� uÞ � rSf �
X3

i;j¼1

ðrSuiÞjðrSujÞi � u � u;

otUþ u � rSðU� UBÞ þ ðU� UBÞd ¼ 0;

� DSw ¼ f;

DSv ¼ d;

rotSwþrSv ¼ u.
For the numerical implementation of the SSWE, the Lagrange–Galerkin method has been applied. This
method combines the semi-Lagrangian method with the finite element method. The semi-Lagrangian meth-
od, which has good stability properties, discretizes the material derivative along trajectories. The finite
element method on the sphere is constructed on an approximating polyhedron consisting of a triangular
grid with nodes on the sphere.

To quantify the model�s convergence properties, we choose the relative L2-error
gðgÞ ¼ kg � ganakS
kganakS
for a numerical solution g : S ! R, its according analytical solution gana : S ! R and the L2-norm kgkS ¼
ð
R
S jgj

2 drÞ1=2. In the following two sections, we regard the L2-error of the vorticity f and the geopotential U
after a simulation time of 12 h. Due to the fact that in all cases the divergence dana vanishes a relative error
of d is not computable. Because the convergence analysis for d with the absolute L2-error idiS qualitatively
shows the same results as for f, see [19], we confine our error analysis to f and U.
5.1. A steady-state solution

At first, we consider the solid body rotation given in [34, case 2]. The relative errors g(f) and g(U) after a
simulation time of 12 h are depicted in Fig. 4 in dependence on the time step Dt and the grid resolution Dx.
While the errors are almost independent of Dt, the errors decrease monotonously as Dx decreases until the
minima g(f) = 2.5 · 10�4 and g(U) = 4.0 · 10�5. This order of magnitude seems to be reasonable due to the
model�s single precision accuracy. Contrary to the expectation, for Dt = 2 min the monotony of g fails at
Dx = 261 km. Probably, here the computational truncation dominates the discretization error. This will
be a matter of future analysis with double precision accuracy. Fig. 5 shows the spatial error distribution
of U � Uana. U � Uana is limited by 4 gpm and the error structure displays a zonal wave number five which
is an effect of the icosahedral grid structure.
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Fig. 4. Steady-state solid body rotation, rel. errors for vorticity g(f) and geopotential g(U), time step Dt, grid resolution Dx.

Fig. 5. Steady-state solid body rotation, difference plot U � Uana.
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5.2. Unsteady solutions

The simulation of the unsteady solid body rotation of Example 3 allows us to study the convergence
properties for unsteady flows. g(f) and g(U) are depicted in Fig. 6 after a simulation time of 12 h. In con-
trast to the steady-state solution in Section 5.1 the errors are almost independent of Dx, but decrease as Dt
decreases. This seems to be a feature of the semi-Lagrangian method. During a time step from t0 to t0 + Dt
the flow trajectory depends on the velocity field u, which is a function of space and time t 2 [t0, t0 + Dt].
Because u is a model variable, the discrete trajectory has to be evaluated only for u-values for t 6 t0.
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Fig. 6. Unsteady solid body rotation, rel. errors for vorticity g(f) and geopotential g(U), time step Dt, grid resolution Dx.



M. Läuter et al. / Journal of Computational Physics 210 (2005) 535–553 549
For the steady-state solution in Section 5.1, u is independent on time. Thus, the discrete trajectory is inde-
pendent on Dt for sufficient small Dt. In contrast, for the unsteady solution the u-values for t 2 [t0, t0 + Dt]
are extrapolated by the values for t 6 t0. Thus, the calculation of the discrete trajectory improves for
decreasing Dt. Due to the smooth fields in this case the trajectory error dominates g. The resulting minima
g(f) = 2.0 · 10�2 and g(U) = 5.0 · 10�4 are 2 respectively 1 order of magnitude larger compared to the re-
sults of the steady-state solution. Fig. 7 shows the spatial error distribution of U � Uana. The maximum of
about 40 gpm is noticeable higher than in the steady-state case, but the error does not reveal any zonal wave
number five structure. Compared to Fig. 2, we find an error distribution symmetric to the solid body rota-
tion axis, instead (notice that Fig. 2 shows the geopotential at initial time t = 0). Finally, small-scale gravity
wave structures appear near the points (�100�, 40�) and (80�, �40�).

Example 4, the unsteady solid body rotation with superimposed jet stream, is chosen as a second unste-
ady test case. g(f) and g(U) are depicted in Fig. 8 after a simulation time of 12 h. Although there are slight
dependencies on Dt, g(f) and g(U) primarily depend on Dx. This is due to the sharp gradients near the jet
stream which were not present in Example 3. Thus, now the spatial discretiztion error dominates the tra-
jectory error. The significant oscillation for g(U) we attribute to the grid structure. The grid triangles are
generated by repeated bisection. For two consecutive grids with, e.g. Dx = 522 km and Dx = 428 km, sec-
tions of the grids are depicted in Figs. 10 and 11, respectively. In Fig. 10, we find more edges orientated
parallelly to the flow direction than in Fig. 11. This orientation causes smoother discrete fields for
Dx = 522 km than for Dx = 428 km although the grid resolution is coarser. The resulting minima of
g(f) = 4.0 · 10�2 and g(U) = 9.0 · 10�4 are similar to the values for the unsteady solid body rotation.
Fig. 9 shows the spatial error distribution of U � Uana. Again, the maximum value of about 250 gpm is
Fig. 7. Unsteady solid body rotation, difference plot U � Uana.
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Fig. 9. Unsteady jet stream, difference plot U � Uana.

Fig. 10. Unsteady jet stream, velocity u, geopotential U, Dx = 522 km, section (�10�,10�) · (35�,45�).

Fig. 11. Unsteady jet stream, velocity u, geopotential U, Dx = 428 km, section (�10�,10�) · (35�,45�).
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one order of magnitude larger than for the unsteady solid body rotation. Compared to Fig. 3, we find the
error maxima near strong geopotential gradients (notice that Fig. 3 shows the geopotential at initial time
t = 0). Additionally, all contour lines show small-scale gravity wave structures.

The presented application of unsteady analytical solutions for the convergence analysis of the model
PLASMA provides information for a further model development. For realistic flow, which is unsteady
in particular, an unsteady analytical solution test gives a better estimation of the numerical error than a
steady-state solution test. The errors for the unsteady tests are about 2 orders of magnitude larger than
for the steady-state test. The error dependence on the time step in Fig. 6 shows that the choice of time step
in the model is not only a question of model stability but of accuracy of the model result.
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6. Summary

Models based on the SSWE are one way to realize a barotropic model of the atmosphere. For the val-
idation process the quantification of convergence properties is an important task. Therefore, the necessary
objective error measures are provided by analytical solutions of the SSWE. Whereas steady-state analytical
solutions which consist essentially in axially symmetric solutions, are well known from the literature, un-
steady analytical solutions of the SSWE have not been established until now.

We presented the transformation method for the SSWE which is based on the change from a fixed carte-
sian to a rotating coordinate system. The fundamental examples in Section 4 provide unsteady analytical
solutions of the SSWE. They consist of axially symmetric flows and include a solid body rotation and a
jet stream as special cases.

Based on the given unsteady solutions, we have shown a quantification of the convergence properties of
the atmospheric model PLASMA. The extension of the analysis from steady-state to unsteady solutions
demonstrates new demands on model accuracy in space and time. The requirements for the model time step
are on the one hand model stability and on the other hand the model accuracy. Thus, the application of the
unsteady analytical solutions to the model validation gives important hints on further model development.
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Appendix A. General curvilinear coordinates

The concept of general curvilinear coordinates is a method to describe functions with respect to different
coordinates. We distinguish between the generic coordinates and the curvilinear coordinates. The generic
coordinates are the coordinates with respect to the generic basis vectors
ei ¼ ð1; 0; 0ÞT; ei ¼ ð0; 1; 0ÞT; ei ¼ ð0; 0; 1ÞT ðA:1Þ

in R3. The curvilinear coordinates are defined by their coordinate transformation function ut, which defines
the mapping from the generic to the curvilinear coordinates. For open sets G;R � R3 we denote the coor-
dinate transformation function for t 2 I with ut:G! R and its inverse with u�1

t : R ! G. Then for a generic
coordinate x 2 G and the corresponding curvilinear coordinate y 2 R the equations
utðxÞ ¼ y; u�1
t ðyÞ ¼ x
hold. Further on the position vector r : R · I ! G of a curvilinear coordinate y 2 R is defined by
rðy; tÞ ¼ u�1

t ðyÞ. We define the velocity w of a particle in the generic coordinate system which is resting
in the curvilinear coordinates by
wðx; tÞ ¼ or

ot
ðutðxÞ; tÞ 8ðx; tÞ 2 G� I . ðA:2Þ
The description of velocities in general curvilinear coordinates is based on themovement of a Lagrangian par-
ticle along a trajectory. A particle�s trajectory can be described by trajectory functions x : I ! G and y : I ! R
in generic and curvilinear coordinates, respectively. By definition, these functions fulfill the equation
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x(t) = r(y(t),t) for all t 2 I. Then the particle�s velocities v : I ! R3 and u : I ! R3 in generic and curvilinear
coordinates, respectively, are defined by vðtÞ ¼ ox

ot and uðtÞ ¼ oy

ot ¼
oyi
ot ei. For all t 2 I, one obtains the relation

between v and u by applying Eq. (A.2)
vðtÞ ¼ drðyðtÞ; tÞ
dt

¼ wðrðy; tÞ; tÞ þ uðtÞ � ei
or

oyi
ðy; tÞ.
Due to this relation, the two velocity fields v : G ! R3 and u : R ! R3 in generic and curvilinear coordi-
nates, respectively, describe the same physical flow, if they fulfill the equation
v ¼ u � ei
or

oyi
þ w. ðA:3Þ
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